Keyword: target
Paper Title Other Keywords Page
TUVIR06 Review of Required Proof-Of-Principle-Experiments Towards a Muon Collider collider, positron, experiment, emittance 16
 
  • A. Variola
    INFN/LNF, Frascati, Italy
 
  The HEP scientific community is, at present, exploring different scenario concerning the post LHC era. In fact, after the Higgs boson discovery, the future facility will require not only to improve the LHC and HL-LHC physics programs but also to continue the search for phenomena beyond the Standard Model into an extended energy domain. In this framework ideas and proposals, together with the results obtained in accelerator research, introduce a scenario where the feasibility of a multi-TeV muon collider should be explored. This article will describe the advantages provided by the muon collider scheme. The proposed schemes will be shortly illustrated. The very important recent results obtained in proof-of-principle experiments will be subsequently described. Finally, for each scheme, the future possible directions for proof-of-principle experiments to demonstrate the muon collider feasibility will be presented.  
video icon
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2020-TUVIR06  
About • paper received ※ 31 May 2020       paper accepted ※ 12 June 2020       issue date ※ 23 October 2020  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THVIR13 CERN-MEDICIS: A Unique Facility for the Production of Non-Conventional Radionuclides for the Medical Research ISOL, proton, radiation, operation 75
 
  • C. Duchemin, E. Barbero-Soto, A.P. Bernardes, R. Catherall, E. Chevallay, A. Dorsival, V.N. Fedosseev, P. Fernier, S.S. Gilardoni, J.L. Grenard, L. Lambert, G. Lilli, G. Lilli, G. Lunghi, B.A. Marsh, Y. Martinez Palenzuela, S. Marzari, F. Pozzi, J. Riegert, S. Rothe, T. Stora, J. Vollaire, N.-T. Vuong, S. Wilkins
    CERN, Meyrin, Switzerland
  • T.E. Cocolios, R. Heinke
    KU Leuven, Leuven, Belgium
  • F. Haddad
    Cyclotron ARRONAX, Saint-Herblain, France
  • M.A. Khan
    PINSTECH, Islamabad, Pakistan
  • N. Michel
    SUBATECH, Nantes, France
  • J.P. Ramos
    SCK•CEN, Mol, Belgium
  • Z. Talip, N.P. van der Meulen
    PSI, Villigen PSI, Switzerland
  • K. Wendt
    Johannes Gutenberg University Mainz, Institut für Physik, Mainz, Germany
  • K. Wendt
    Mainz University, Mainz, Germany
 
  The MEDICIS facility is a unique facility located at CERN dedicated to the production of non-conventional radionuclides for research and development in imaging, diagnostics and radiation therapy. It exploits in a Class A work sector, a dedicated isotope separator beam line, a target irradiation station at the 1.4 GeV Proton Synchroton Booster (PSB) and receives activated targets from external institutes during CERN Long Shut-Downs. The target is heated up at high temperatures to allow for the diffusion and effusion of the atoms out of the target that are subsequently ionized. The ions are accelerated and sent through an off-line mass separator. The radionuclide of interest is extracted through mass separation and implanted into a thin metallic collection foil. After collection, the batch is prepared to be dispatched to a research center. In the near-future, the radiochemistry process will also be performed in MEDICIS. Since its commissioning in December 2017, the facility has provided novel radionuclides such as Tb-149, Tb-155, Tm-165, Er-169 and Yb-175 with high specific activity, some for the first time, to European research institutes part of the collaboration.  
video icon
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2020-THVIR13  
About • paper received ※ 09 June 2020       paper accepted ※ 12 June 2020       issue date ※ 23 September 2020  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THVIR15 Accelerators for Applications in Energy and Nuclear Waste Transmutation cavity, proton, linac, cyclotron 86
 
  • A. Fabich
    EBG MedAustron, Wr. Neustadt, Austria
  • H. Aït Abderrahim, U. Dorda, D. Vandeplassche
    SCK•CEN, Mol, Belgium
 
  Accelerator Driven Systems (ADS) is a concept using high power proton accelerators in energy production and nuclear waste transmutation. Amongst typical beam performance requirements, the operational reliability of the accelerator is exceptionally demanding. The advantages and challenges of different driver options, like cyclotrons and linacs, are evaluated and worldwide design studies are summarized. The MYRRHA design is based on a 600 MeV superconducting proton linac. The first stage towards its realization was recently approved to be constructed by SCK•CEN in Belgium. The 100 MeV linac will serve as technology demonstrator for MYRRHA as well as driver for independent two target stations, one for fusion material research and one for research and medical isotope production. MYRRHA in its final implementation is envisaged as an international collaboration.  
video icon
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2020-THVIR15  
About • paper received ※ 29 May 2020       paper accepted ※ 25 July 2020       issue date ※ 09 October 2020  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)