Keyword: linac
Paper Title Other Keywords Page
WEVIR06 Hollow Electron Beams in a Photoinjector electron, simulation, cathode, laser 49
 
  • A. Halavanau, Y. Ding, C.E. Mayes
    SLAC, Menlo Park, California, USA
  • S. Baturin, P. Piot
    Northern Illinois University, DeKalb, Illinois, USA
  • P. Piot
    ANL, Lemont, Illinois, USA
 
  Photoinjectors have demonstrated the capability of electron beam transverse tailoring, enabled by the microlens array (MLA) setup. For instance, electron beams, transversely segmented into periodic beamlet formations, were successfully produced in several experiments at Argonne Wakefield Accelerator (AWA). In this proceeding, we discuss necessary steps to demonstrate the hollow electron beam generation, with an arbitrary diameter and width with the MLA. We also present beam dynamics simulations and highlight key features of the hollow beam transport in LCLS copper linac.  
video icon
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2020-WEVIR06  
About • paper received ※ 01 June 2020       paper accepted ※ 12 June 2020       issue date ※ 27 October 2020  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEVIR11 Safety System for the Respect of Nuclear Requirements of SPIRAL2 Facility controls, experiment, operation, ISOL 57
 
  • P. Anger, V.C. Cingal, JC-P. Pacary, S.P.G. Perret-Gatel, A. Savalle
    GANIL, Caen, France
 
  The SPIRAL2 Facility at GANIL is based on the construction of a superconducting ion CW LINAC (up to 5 mA - 40 MeV deuteron beams and up to 1 mA - 14.5 MeV/u heavy ion beams) with 2 experimental areas called S3 and NFS. For safety classified systems, SPIRAL2 project system engineering sets up a specific reinforced process, based on V-Model, to validate, at each step, all the requirements (technical, nuclear safety, quality, reliability, interfaces…) from the functional specifications to the final validation. Since 2016, safety devices have been under construction and in test phase. These tests which are pre-requisites to deliver the first beam demonstrated that both functional and safety requirements are fulfilled. Currently, all of them are in operation for the LINAC and NFS commissioning phases. This contribution will describe the requirements, the methodology, the quality processes, the technical studies, the failure mode and effects analysis, the tests, the status and will propose you a feedback.  
video icon
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2020-WEVIR11  
About • paper received ※ 01 June 2020       paper accepted ※ 14 June 2020       issue date ※ 15 June 2020  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THVIR12 FLASH Radiation Therapy: Accelerator Aspects radiation, electron, proton, photon 71
 
  • A. Patriarca, L. De Marzi, V. Favaudon, S.J. Meyroneinc
    Institut Curie - Centre de Protonthérapie d’Orsay, Orsay, France
 
  One of the new paradigms in radiation therapy (RT) is the FLASH dose delivery irradiation technique. The FLASH methodology consists in delivering millisecond pulses of radiation (total beam-on time < 100-500 ms) delivered at a high mean dose-rate (> 40-100 Gy/s) and pulse amplitude (> 1E6 Gy/s), over 2000 times faster than in conventional RT. New accelerator ideas are under development or are being tested to deliver this type of beam. In this paper we will report the accelerator technology used for the pre-clinical studies and the necessary developments to deliver this novel dose RT technique.  
video icon
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2020-THVIR12  
About • paper received ※ 01 June 2020       paper accepted ※ 12 June 2020       issue date ※ 28 September 2020  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THVIR15 Accelerators for Applications in Energy and Nuclear Waste Transmutation target, cavity, proton, cyclotron 86
 
  • A. Fabich
    EBG MedAustron, Wr. Neustadt, Austria
  • H. Aït Abderrahim, U. Dorda, D. Vandeplassche
    SCK•CEN, Mol, Belgium
 
  Accelerator Driven Systems (ADS) is a concept using high power proton accelerators in energy production and nuclear waste transmutation. Amongst typical beam performance requirements, the operational reliability of the accelerator is exceptionally demanding. The advantages and challenges of different driver options, like cyclotrons and linacs, are evaluated and worldwide design studies are summarized. The MYRRHA design is based on a 600 MeV superconducting proton linac. The first stage towards its realization was recently approved to be constructed by SCK•CEN in Belgium. The 100 MeV linac will serve as technology demonstrator for MYRRHA as well as driver for independent two target stations, one for fusion material research and one for research and medical isotope production. MYRRHA in its final implementation is envisaged as an international collaboration.  
video icon
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2020-THVIR15  
About • paper received ※ 29 May 2020       paper accepted ※ 25 July 2020       issue date ※ 09 October 2020  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)