Keyword: detector
Paper Title Other Keywords Page
MOVIR01 The Future Circular Collider Study collider, MMI, luminosity, electron 6
 
  • F. Zimmermann, M. Benedikt
    CERN, Meyrin, Switzerland
  • A.-S. Müller
    KIT, Eggenstein-Leopoldshafen, Germany
 
  Funding: This work was supported, in part, by the European Commission under the HORIZON2020 Research and Innovation Programme, grant agreement 951754 (FCCIS).
At the end of 2018, a large worldwide collaboration, with contributors from more than 350 institutes completed the conceptual design of the Future Circular Collider (FCC), a ~100 km accelerator infrastructure linked to the existing CERN complex, that would open up the way to the post-LHC era in particle physics. We present an overview of the two main accelerator options considered in the design study, namely the lepton collider (FCC-ee), serving as highest-luminosity Higgs and electroweak factory, and the 100-TeV energy-frontier hadron collider (FCC-hh), along with the ongoing technological R&D efforts and the planned next steps. A recently approved EU co-funded project, the FCC Innovation Study (FCCIS), will refine the design of the lepton collider and prepare the actual implementation of the FCC, in collaboration with European and global partners, and with the local authorities.
 
video icon
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2020-MOVIR01  
About • paper received ※ 09 June 2020       paper accepted ※ 04 September 2020       issue date ※ 12 October 2020  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEVIR16 A Novel Nondestructive Diagnostic Method for MeV Ultrafast Electron Diffraction electron, experiment, diagnostics, real-time 67
 
  • X. Yang, M.G. Fedurin, J.J. Li, T.V. Shaftan, V.V. Smaluk, L. Wu, L. Yu, Y. Zhu
    BNL, Upton, New York, USA
  • W. Wan
    ShanghaiTech University, Shanghai, People’s Republic of China
 
  Funding: BNL LDRD
A real-time, nondestructive, Bragg-diffracted electron beam energy, energy-spread and spatial-pointing jitter monitor is experimentally verified by encoding the electron beam energy and spatial-pointing jitter information into the mega-electron-volt ultrafast electron diffraction pattern. The shot-to-shot fluctuation of the diffraction pattern is then decomposed to two basic modes, i.e., the distance between the Bragg peaks as well as its variation (radial mode) and the overall lateral shift of the whole pattern (drift mode). Since these two modes are completely decoupled, the Bragg-diffraction method can simultaneously measure the shot-to-shot energy fluctuation from the radial mode with 2,10-4 precision and spatial-pointing jitter from the drift mode having wide measurement span covering energy jitter range from 10-4 to 10-1. The key advantage of this method is that it allows us to extract the electron beam energy spread concurrently with the ongoing experiment and enables online optimization of the electron beam especially for future high charge single-shot ultrafast electron diffraction (UED) and ultrafast electron microscopy (UEM) experiments.
 
video icon
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2020-WEVIR16  
About • paper received ※ 08 June 2020       paper accepted ※ 14 June 2020       issue date ※ 07 September 2020  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)