Keyword: cavity
Paper Title Other Keywords Page
TUVIR11 IFMIF/EVEDA RFQ Beam Commissioning at Nominal 125 mA Deuteron Beam in Pulsed Mode rfq, LEBT, emittance, operation 21
 
  • F. Grespan, L. Bellan, M. Comunian, E. Fagotti, A. Palmieri, F. Scantamburlo
    INFN/LNL, Legnaro (PD), Italy
  • T. Akagi, Y. Hirata, K. Kondo, Y. Shimosaki, T. Shinya, M. Sugimoto
    QST, Aomori, Japan
  • B. Bolzon, N. Chauvin, J. Marroncle
    CEA-IRFU, Gif-sur-Yvette, France
  • P. Cara
    IFMIF/EVEDA, Rokkasho, Japan
  • H. Dzitko, A. Jokinen, I.M. Moya
    F4E, Germany
  • D. Jimenez-Rey, I. Podadera
    CIEMAT, Madrid, Spain
  • A. Marqueta
    Fusion for Energy, Garching, Germany
  • Á. Rodríguez Páramo
    ESS Bilbao, Zamudio, Spain
 
  In summer 2019 the IFMIF/EVEDA Radio Frequency Quadrupole (RFQ) accelerated its nominal 125 mA deuteron beam current up to 5 MeV, with 90% transmission for pulses of 1 ms at 1Hz. The Linear IFMIF Prototype Accelerator (LIPAc) is a high intensity deuteron linear accelerator; it is the demonstrator of the International Fusion Material Irradiation Facility (IFMIF). In particular the RFQ is the longest and most powerful ever operated. An intense campaign of measurements have been performed in Rokkasho to characterize several performances of this complex machine: transmission, emittances, energy spectrum and beam loading. The history and the results of the commissioning until this important project milestone are here described. An overview of the activities planned to reach CW operation is also presented.  
video icon
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2020-TUVIR11  
About • paper received ※ 31 May 2020       paper accepted ※ 17 August 2020       issue date ※ 09 October 2020  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUVIR14 The SIS100 RF Systems - Updates and Recent Progress LLRF, power-supply, acceleration, operation 26
 
  • J.S. Schmidt, R. Balß, M. Frey, P. Hülsmann, H. Klingbeil, H.G. König, U. Laier, D.E.M. Lens, A. Stuhl
    GSI, Darmstadt, Germany
 
  Within the FAIR (Facility for Antiproton and Ion Research) accelerator complex, the SIS100 synchrotron will provide high intensity proton to heavy ion beams to the various beam lines and storage rings. This paper presents the recent progress of the SIS100 overall RF system in its preparation towards installation. The RF system is split into four separate sub-systems with a significant number of RF stations. Each RF station consists of a ferrite or MA loaded cavity, a tetrode-based power amplifier, a switching mode power supply unit and various analogue or digital LLRF components for feedback and feedforward control. Fourteen ferrite cavities will generate the accelerating field, while nine cavities loaded with magnetic alloy ring cores are used for bunch compression. The barrier bucket system, which is used to apply a pre-compression of the beam, as well as the longitudinal feedback system for stabilization of beam oscillations will be realized by in total four cavities of the same type.  
video icon
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2020-TUVIR14  
About • paper received ※ 03 June 2020       paper accepted ※ 11 June 2020       issue date ※ 10 August 2020  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEVIR03 Microbunch Rotation as an Outcoupling Mechanism for Cavity-based X-Ray Free Electron Lasers FEL, electron, quadrupole, undulator 35
 
  • R.A. Margraf, Z. Huang
    Stanford University, Stanford, California, USA
  • Z. Huang, J.P. MacArthur, G. Marcus
    SLAC, Menlo Park, California, USA
 
  Funding: This work was supported by the Department of Energy, Laboratory Directed Research and Development program at SLAC National Accelerator Laboratory, under contract DE-AC02-76SF00515.
Electron bunches in an undulator develop periodic density fluctuations, or microbunches, which enable the exponential gain of power in an X-ray free-electron laser (XFEL). For certain applications, one would like to preserve this microbunching structure of the electron bunch as it experiences a dipole kick which bends its trajectory. This process, called microbunch rotation, rotates the microbunches and aligns them perpendicular to the new direction of electron travel. Microbunch rotation was demonstrated experimentally by MacArthur et al. with soft x-rays* and additional unpublished data demonstrated microbunch rotation with hard x-rays. Further investigations into the magnetic lattice used to rotate these microbunches showed that microbunches can be rotated using an achromatic lattice with a small R56, connecting this technique to earlier studies of achromatic bends. Here, we propose and study a practical way to rotate Angstrom-level microbunching as an out-coupling mechanism for the Optical Cavity-Based X-ray FEL (CBXFEL) project at SLAC.
*J. P. MacArthur, A. A. Lutman, J. Krzywinski, and Z. Huang, "Microbunch Rotation and Coherent Undulator Radiation from a Kicked Electron Beam", Physical Review X, vol. 8, no. 4, Nov. 2018.
 
video icon
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2020-WEVIR03  
About • paper received ※ 01 June 2020       paper accepted ※ 12 June 2020       issue date ※ 11 August 2020  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEVIR04 On-Axis Beam Accumulation Based on a Triple-Frequency RF System injection, simulation, synchrotron, storage-ring 40
 
  • G. Xu, S.C. Jiang
    IHEP, Beijing, People’s Republic of China
 
  Considering the incompatible off-axis injection scheme on the newly constructed light sources, we have proposed a new on-axis accumulation scheme based on the so-called triple-frequency RF system [1]. By means of additional second harmonic cavities, the original static longitudinal acceptance will be lengthened, which will provide the sufficient time to raise a full-strength kicker pulse. Through imposing the specific restriction on the RF parameters, the final bunch length can also be stretched to satisfy the functions of the conventional bunch lengthening system. In this paper, we will move on to explain how to build this complex triple-frequency RF system, and present the relevant simulation works.
[1] S.C. Jiang, G. Xu, On-axis injection scheme based on a triplefrequency rf system for diffraction-limited storage rings. Phys.
Rev. ST Accel. Beams 21, 110701 (2018).
 
video icon
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2020-WEVIR04  
About • paper received ※ 26 May 2020       paper accepted ※ 14 June 2020       issue date ※ 25 June 2020  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEVIR05 Longitudinal Stability with Landau Cavities at MAX IV storage-ring, damping, HOM, feedback 44
 
  • F.J. Cullinan, Å. Andersson, P.F. Tavares
    MAX IV Laboratory, Lund University, Lund, Sweden
 
  The use of Landau cavities was foreseen for both the 1.5 GeV and 3 GeV storage rings at the MAX IV facility from conception. Along with increasing the Touschek lifetime and reducing the emittance degradation due to intrabeam scattering, their purpose is to stabilise the beam in the longitudinal plane. They now play a crucial role in the everyday operation of the two storage rings. This paper outlines the current status and the aspects of longitudinal beam stability that are affected, positively or negatively, by the presence of Landau cavities. Their effectiveness in the two storage rings is also compared.  
video icon
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2020-WEVIR05  
About • paper received ※ 01 June 2020       paper accepted ※ 12 June 2020       issue date ※ 02 November 2020  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THVIR15 Accelerators for Applications in Energy and Nuclear Waste Transmutation target, proton, linac, cyclotron 86
 
  • A. Fabich
    EBG MedAustron, Wr. Neustadt, Austria
  • H. Aït Abderrahim, U. Dorda, D. Vandeplassche
    SCK•CEN, Mol, Belgium
 
  Accelerator Driven Systems (ADS) is a concept using high power proton accelerators in energy production and nuclear waste transmutation. Amongst typical beam performance requirements, the operational reliability of the accelerator is exceptionally demanding. The advantages and challenges of different driver options, like cyclotrons and linacs, are evaluated and worldwide design studies are summarized. The MYRRHA design is based on a 600 MeV superconducting proton linac. The first stage towards its realization was recently approved to be constructed by SCK•CEN in Belgium. The 100 MeV linac will serve as technology demonstrator for MYRRHA as well as driver for independent two target stations, one for fusion material research and one for research and medical isotope production. MYRRHA in its final implementation is envisaged as an international collaboration.  
video icon
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2020-THVIR15  
About • paper received ※ 29 May 2020       paper accepted ※ 25 July 2020       issue date ※ 09 October 2020  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)