MC7: Accelerator Technology
T14 Vacuum Technology
Paper Title Page
In-Situ Amorphous Carbon Coating of the Beam Screens of LHC’s Standalone Magnets  
  • P. Costa Pinto, V. Baglin, P. Chiggiato, A.R. Costa, P. Cruikshank, P. Demolon, S. Fiotakis, M. Himmerlich, H. Kos, N. Kos, G. Marinaro, M. Taborelli, J. Tagg, D.A. Zanin
    CERN, Geneva, Switzerland
  The heat load generated by the Electron Cloud (EC) in some superconducting magnets of the LHC has been recognized as a limiting factor for the operation of the High Luminosity LHC (HL-LHC). To overcome this problem, CERN launched a program to develop an "in-situ" coating technology to deploy amorphous carbon thin films - with a secondary electron yield below 1.1 - in the inner walls of the beam screens of selected magnets in the LHC tunnel. This includes the inner triplets for the two experiments in points 2 and 8, (ALICE and LHC-b), and some standalone magnets of their respective matching sections. In this work, we report on the first "in-situ" coating campaign that is being performed in Long Shutdown 2 (LS2, 2019-2020). The milestones of the R&D program are presented, namely achieving low secondary electron emission (by carbon and co-deposition of titanium); ensuring adhesion to the substrate (ion etching and titanium under layer); and implementing the mechanical setup to displace the sputtering source along 20 meters of beam screen in ultrahigh vacuum. The procedure is described as well as the main difficulties and achievements during the implementation in the tunnel.  
video icon
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
Introduction to 3D Printing Techniques for Accelerator Vacuum Systems  
  • T. Ha, S.H. Kim, C.D. Park, S. Shin
    PAL, Pohang, Republic of Korea
  • HG. Kim, H.K. Park
    KITECH, Gangneung, Republic of Korea
  A large variety of small aperture magnets is required for modern low emittance storage rings. These magnets restrict the flexibility of the vacuum system. The low conductance of the vacuum chamber together with the small aperture is the main limiting factor for achieving the required vacuum performance. In addition it is challenging to accommodate high heat loads from synchrotron radiation because of the tight space available for the vacuum parts. Metal 3D printing techniques for vacuum system components of 4th generation storage ring (4GSR) could mitigate some of the difficulties. An overview of the world-wide status, the expected benefits and the challenges of 3D printing techniques for accelerator vacuum systems is presented. Projects at existing and future synchrotron facilities are described. One example is the design of the vacuum system for the PAL-4GSR at Pohang Accelerator Laboratory (PAL), which includes 3D printed NEGs for distributed pumping and a compact sputter ion pump with 3D printed anode structures.  
video icon
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)